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What to do with the CO,?

IPCC Special report 2018 — limiting warming to 1.5 °C: up to 1,000Gt of

CCS.
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Global distribution of sedimentary basins
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IPCC (2005) Special Report on Carbon Capture and Storage



Vast capacity
for CO, storage
globally

First generation of
projects
underpinned by up
to 350 Gt capacity
in oil and gas
reservoirs
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CCS exists: decades of injection & monitoring

CO2-EOR 1972, eg Scurry County,
Texas, Rangeley, Weyburn .... e




Where is CO, storage happening?

Injection into oil reservoirs dominates, 11 of 14 industrial scale projects
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Stabilization Wedges v
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What is a “Wedge™?

A ‘wedge”is a strategy to reduce carbon emissions that grows in 50 years
from zero to 1.0 GtC/yr. The strategy has already been commercialized at
scale somewhere.

1 GtC/yr

Total = 25 Gigatons
carbon

50
years

A

v

Cumulatively, a wedge redirects the flow of 25 GtC in its
first 50 years. This is 2.5 trillion dollars at $100/tC.

A “solution” to the CO, problem should provide at least one wedge.

£\
Carbon Mitigation Initiative, Princeton University - http://cmi.princeton.edu/abo




15 Wedge Strategies in 4 Categories
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Costs of storage e
are low

compared to the 3D
costs of capture

é" $50

Recent estimates for the E
UK put costs at £11- 2
20/tC0O,, much associated § %0
with capex for transport
infrastructure

-$50

-$100

Sample Projects

1: Very large power plant (8 MtCO,/y), moderately distant oil field

2: Small cement plant (0.4 MtCO,/y), nearby (<30 miles) ECBM-producing coal seam
3: Very large power plant (9 MtCO,/y), nearby (<30 miles) deep saline formation

4: Large power plant (4 MtCO,/y), moderately distant gas basin

5: Large power plant (2 MtCO,/y), distant (>100 miles) deep saline formation

6: Small steel plant (0.3 MtCO,/y), moderately distant deep saline formation

7: Very small refinery (0.1 MtCO,/y), nearby (<30 miles) coal seam
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Opportunities for Carbon Dioxide Capture and Storage in China, PNNL-19091



Remedy for policy:
\ Oxburgh Report 2016

Q;“ﬁ(’) There are three failures to address
\ /

. —

HEAT

1) Expense : create a national CCS
company, who develop the first full
chain capture-transport-storage
infrastructure in each region. Delivery at
£85/MWhr. This company is sold to
investors when proven liquid operations

2) Wider application: CCS is essential on
power, heat, transport

LOWEST COST DECARBONISATION FOR THE UK:

THE CRITICAL ROLE OF CCS 3) A firm market for storage of CO2 is

created, by means of a Certificate on all
producers of fossil carbon entering the
UK. That carries an Obligation to store a
national percentage of CO2, starting 1%,
rising to 100% mid century

Report to the Secretary of State for Business, Energy and
Industrial Strategy from the Parliamentary Advisory Group
on Carbon Capture and Storage (CCS)

September 2016



Properties of CO, in the subsurface and long-term fate
Critical point of CO, is 31°C and 72 atm (7.2 MPa).

CO, will be injected deep underground at supercritical conditions
(depths greater than around 800 m): CO, is relatively compressible;
density less than water, similar to oil; low viscosity — around10% of
that of water.

What happens on injection?
Pressure increase (fracturing, induced seismicity)
Buoyant movement (escape through caprock)
Capillary trapping (strands CO, in the pore space)
Dissolution (CO,-rich brine sinks)

Reaction (forms solid carbonate)

abkrowbn -~

Depth (km)

Density of CO, (kgim?)



Pressure buildup limits injection rate

Pressure buildup may lead to induced seismicity: volume added to the subsurface
increases pressure and can cause fault slippage. Similar problems encountered in
wastewater disposal from fracking operations in the US.
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Szulczewski et al. (2012) Lifetime of carbon capture and storage as a climate-change mitigation
technology. PNAS. 109, 14, 5185-5189



After injection buoyancy drives flow
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IPCC (2005) Special Report on Carbon Capture and Storage



Observations at Sleipner — Norwegian North Sea
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Boait et al. (2012) Spatial and temporal evolution of injected CO, at the
Sleipner Field, North Sea. Journal of Geophysical Research, 117, B03309




Simple flow processes can describe plume evolution

Semi-analytical models to estimate risk of migration and leakage

a. Year 0-1 b. Year 1-2

u 500 m

c. Year 2-3 d. Year 3
_'___,.'———"""-_-—\-—-—-\ _“__,_-———‘_‘—-_\——\_

R2=0.95

1996 2000 2004 2008

Boait et al. (2012) Spatial and temporal evolution of injected CO, at the
Sleipner Field, North Sea. Journal of Geophysical Research, 117, B03309



How does CO, move and how is it trapped —

Strlg:tural, dissolution, residual trapping

F = 100 km
A A \

sloping caprock

regional 2km1 mobile CO2 A
groundwater

flow - —
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Szulczewski et al. (2012) Lifetime of carbon capture and storage as a climate-change mitigation
technology. PNAS. 109, 14, 5185-5189
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Relative permeability:
How fast does it move?
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Imperial College multi-scale imaging lab

Start with the fundamentals — understand processes experimentally at the pore scale.
Micron-to-metre imaging with in situ displacement at reservoir conditions.
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Trapped CO, clusters — colour indicates size

How much is trapped and After drainage

. After
how much can be stored? : T

aterflooding

Results in sandstones
(Doddington, Bentheimer
and Berea).
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In three-phase flow see enhanced trapping

What about storage in
depleted oilfields?

Here oil spreads as a layer
between water and gas
and enhances trapping —
more storage plus
additional oil recovery.




So what is the residual saturation in relation to initial?
About 50% - So migration distances about two times emplacement.
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Krevor et al. (2011) Relative permeability and trapping of CO2 and water in sandstone
rocks at reservoir condition, Water Resources Research 48, 2, W02532



Rock heterogeneity leads to even more trapping

With barrier
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Letters GL048239



In UK rocks, less, but still significant trapping, around
40%
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Where would CO, storage F @
happen in the UK? o —
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Injection design

Not passive injection/monitoring: Production wells to relieve pressure; Injection of brine to
trap CO,; Enhanced trapping in oilfields.

Shown below: 20 years of water and CO, injection followed by 2 years of water injection
in realistic geology: 95% of CO, trapped after 4 years of water injection
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Overall summary

* Subsurface reservoirs provide storage potential for ~103 Gt CO,
worldwide, enough for several 25 Gt “wedges”

* Several physico-chemical processes work together to result in a
stabilisation of subsurface CO, —impermeable caprocks, resistance to
movement, residual trapping, dissolution into the brine.

* The movement and trapping of CO, is now well understood from both
a physical perspective and a modelling perspective

* Field scale pilot projects have largely validated our understanding of
how to predictively model CO, migration and trapping

* Analogue field sites demonstrate that CO, can remain stable in
gaseous form in the subsurface for at least “1Ma

Without CCS we are condemned to dangerous climate change.
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